

High School Life Sciences

Students in high school develop understanding of key concepts that help them make sense of life science. The ideas are building upon students' science understanding of disciplinary core ideas, science and engineering practices, and crosscutting concepts from earlier grades. There are five life science topics in high school: 1) Structure and Function, 2) Inheritance and Variation of Traits, Matter and Energy in Organisms and Ecosystems, 4) Interdependent Relationships in Ecosystems, and 5) Natural Selection and Evolution. The performance expectations for high school life science blend core ideas with scientific and engineering practices and crosscutting concepts to support students in developing useable knowledge that can be applied across the science disciplines. While the performance expectations in high school life science couple particular practices with specific disciplinary core ideas, instructional decisions should include use of many practices underlying the performance expectations. The performance expectations are based on the grade-band endpoints described in A Framework for K-12 Science Education (NRC, 2012).

The performance expectations in the topic *Structure and Function* help students formulate an answer to the question: "How do the structures of organisms enable life's functions?" High school students are able to investigate explanations for the structure and function of cells as the basic units of life, the hierarchical systems of organisms, and the role of specialized cells for maintenance and growth. Students demonstrate understanding of how systems of cells function together to support the life processes. Students demonstrate their understanding through critical reading, using models, and conducting investigations. The crosscutting concepts of structure and function, matter and energy, and systems and system models in organisms are called out as organizing concepts.

The performance expectations in the topic *Inheritance and Variation of Traits* help students in pursuing an answer to the question: "How are the characteristics from one generation related to the previous generation?" High school students demonstrate understanding of the relationship of DNA and chromosomes in the processes of cellular division that pass traits from one generation to the next. Students can determine why individuals of the same species vary in how they look, function, and behave. Students can develop conceptual models for the role of DNA in the unity of life on Earth and use statistical models to explain the importance of variation within populations for the survival and evolution of species. Ethical issues related to genetic modification of organisms and the nature of science can be described. Students can explain the mechanisms of genetic inheritance and describe the environmental and genetic causes of gene mutation and the alteration of gene expression. Crosscutting concepts of structure and function, patterns, and cause and effect developed in this topic help students to generalize understanding of inheritance of traits to other applications in science.

The performance expectations in the topic *Matter and Energy in Organisms and Ecosystems* help students answer the questions: "How do organisms obtain and use energy they need to live and grow? How do matter and energy move through ecosystems?" High school students can construct explanations for the role of energy in the cycling of matter in organisms and ecosystems. They can apply mathematical concepts to develop evidence to support explanations of the interactions of photosynthesis and cellular respiration and develop

May 2013 NGSS Release 68

models to communicate these explanations. They can relate the nature of science to how explanations may change in light of new evidence and the implications for our understanding of the tentative nature of science. Students understand organisms' interactions with each other and their physical environment, how organisms obtain resources, change the environment, and how these changes affect both organisms and ecosystems. In addition, students can utilize the crosscutting concepts of matter and energy and Systems and system models to make sense of ecosystem dynamics.

The performance expectations in the topic *Interdependent Relationships in Ecosystems* help students answer the question, "How do organisms interact with the living and non-living environment to obtain matter and energy?" This topic builds on the other topics as high school students demonstrate an ability to investigate the role of biodiversity in ecosystems and the role of animal behavior on survival of individuals and species. Students have increased understanding of interactions among organisms and how those interactions influence the dynamics of ecosystems. Students can generate mathematical comparisons, conduct investigations, use models, and apply scientific reasoning to link evidence to explanations about interactions and changes within ecosystems.

The performance expectations in the topic *Natural Selection and Evolution* help students answer the questions: "How can there be so many similarities among organisms yet so many different plants, animals, and microorganisms? How does biodiversity affect humans?" High school students can investigate patterns to find the relationship between the environment and natural selection. Students demonstrate understanding of the factors causing natural selection and the process of evolution of species over time. They demonstrate understanding of how multiple lines of evidence contribute to the strength of scientific theories of natural selection and evolution. Students can demonstrate an understanding of the processes that change the distribution of traits in a population over time and describe extensive scientific evidence ranging from the fossil record to genetic relationships among species that support the theory of biological evolution. Students can use models, apply statistics, analyze data, and produce scientific communications about evolution. Understanding of the crosscutting concepts of patterns, scale, structure and function, and cause and effect supports the development of a deeper understanding of this topic.

HS.Structure and Function

HS.Structure and Function

Students who demonstrate understanding can:

- HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells. [Assessment Boundary: Assessment does not include identification of specific cell or tissue types, whole body systems, specific protein structures and functions, or the biochemistry of protein synthesis.]
- HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.]
- HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise, stomate response to moisture and temperature, and root development in response to water levels.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world.

 Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-2)

Planning and Carrying Out Investigations

Planning and carrying out in 9-12 builds on K-8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

 Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-LS1-3)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of ev idence consistent with scientific ideas, principles, and theories.

Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-LS1-1)

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods

 Scientific inquiry is characterized by a common set of values that include: logical thinking, precision, open-mindedness, objectivity, skepticism, replicability of results, and honest and ethical reporting of findings. (HS-LS1-3)

Disciplinary Core Ideas

LS1.A: Structure and Function

- Systems of specialized cells within organisms help them perform the essential functions of life. (HS-LS1-1)
- All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells. (HS-LS1-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS3-1.)
- Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level. (HS-LS1-2)
- Feedback mechanisms maintain a living system's internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3)

Crosscutting Concepts

Systems and System Models

 Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions including energy, matter, and information flows—within and between systems at different scales. (HS-LS1-2)

Structure and Function

 Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem. (HS-LS1-1)

Stability and Change

 Feedback (negative or positive) can stabilize or destabilize a system. (HS-LS1-3)

Connections to other DCIs in this grade-band: **HS.LS3.A** (HS-LS1-1)

Articulation across grade-bands: MS.LS1.A (HS-LS1-1),(HS-LS1-2),(HS-LS1-3); MS.LS3.A (HS-LS1-1); MS.LS3.B (HS-LS1-1)

Common Core State Standards Connections: ELA/Literacy —

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS1-1)

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-LS1-1) Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden

the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS1-3)

Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-LS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-LS1-1)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

May 2013 NGSS Release 84

HS.Matter and Energy in Organisms and Ecosystems

HS.Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

- HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosy nthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.1
- HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. [Clarification Statement: Emphasis is on using evidence from models and simulations to support explanations.] [Assessment Boundary: Assessment does not include

the details of the specific chemical reactions or identification of macromolecules.]

- HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy. [Clarification Statement: Emphasis is on the conceptual understanding of the inputs and outputs of the process of cellular respiration.] [Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in cellular respiration.]
- HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. [Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.] [Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.]
- HS-LS2-4. Use a mathematical representation to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosy stems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]
- HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9-12 builds on K-8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

- Use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-5),(HS-LS1-7)
- Develop a model based on evidence to illustrate the relationships between systems or components of a system. (HS-LS2-5)

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

Use mathematical representations of phenomena or design solutions to support claims. (HS-LS2-4)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9-12 builds on K-8 experiences and progresses to explanations and designs that are supported by multiple and independent studentgenerated sources of evidence consistent with scientific ideas, principles, and theories.

 Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-LS1-6),(HS-LS2-3)

Connections to Nature of Science

Scientific Knowledge is Open to Revision in Light of New Evidence

 Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence. (HS-LS2-3)

Disciplinary Core Ideas

LS1.C: Organization for Matter and Energy Flow in Organisms

- The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. (HS-LS1-5)
- The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino acids and other carbon-based molecules that can be assembled into larger molecules (such as proteins or DNA), used for example to form new cells. (HS-LS1-6)
- As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. (HS-LS1-6),(HS-LS1-
- As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another and release energy to the surrounding environment and to maintain body temperature. Cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles. (HS-LS1-7)

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems

- Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes. (HS-
- Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. Some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved. (HS-LS2-4)
- Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. (HS-LS2-5)

PS3.D: Energy in Chemical Processes

 The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (secondary to HS-LS2-5)

Crosscutting Concepts

Systems and System Models

Models (e.g., phy sical, mathematical, computer models) can be used to simulate systems and interactionsincluding energy, matter, and information flows—within and between systems at different scales. (HS-LS2-5)

Energy and Matter

- Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-LS1-5), (HS-LS1-6)
- Energy cannot be created or destroy ed—it only moves between one place and another place, between objects and/or fields, or between systems.(HS-LS1-7),(HS-LS2-4)
- Energy drives the cycling of matter within and between systems. (HS-LS2-

^{*}The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated

HS.Matter and Energy in Organisms and Ecosystems

Connections to other DCIs in this grade-band: HS.PS1.B (HS-LS1-5),(HS-LS1-6),(HS-LS1-7),(HS-LS2-3),(HS-LS2-5); HS.PS2.B (HS-LS1-7); HS.PS3.B (HS-LS1-5),(HS-LS1-7),(HS-LS2-3),(HS-LS2-4); HS.PS3.D (HS-LS2-3),(HS-LS2-4); HS.ESS2.A (HS-LS2-3); HS.ESS2.D (HS-LS2-5)

Articulation across grade-bands: MS.PS1.A (HS-LS1-6); MS.PS1.B (HS-LS1-5),(HS-LS1-6),(HS-LS1-7),(HS-LS2-3); MS.PS3.D (HS-LS1-5),(HS-LS1-6),(HS-LS1-7),(HS-LS2-3),(HS-LS2-3),(HS-LS2-3),(HS-LS2-3); MS.PS3.D (HS-LS1-5),(HS-LS1-6),(HS-LS1-6),(HS-LS1-6),(HS-LS1-7),(HS-LS2-3),(HS-L

Common Core State Standards Connections:

ELA/Literacy -

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or

inconsistencies in the account. (HS-LS1-6),(HS-LS2-3)

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-LS1-6),(HS-LS2-

3)

WHST.9-12.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant

for a specific purpose and audience. (HS-LS1-6),(HS-LS2-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-LS1-6)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings,

reasoning, and evidence and to add interest. (HS-LS1-5),(HS-LS1-7)

Mathematics -

HSN-Q.A.2

MP.2 Reason abstractly and quantitatively. (HS-LS2-4)

MP.4 Model with mathematics. (HS-LS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and

interpret the scale and the origin in graphs and data displays. (HS-LS2-4) Define appropriate quantities for the purpose of descriptive modeling. (HS-LS2-4)

HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-LS2-4)

May 2013 NGSS Release 86

HS.Interdependent Relationships in Ecosystems

HS.Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

- HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. [Clarification Statement: Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate and competition. Examples of mathematical comparisons could include graphs, charts, histograms, or population changes gathered from simulations or historical data sets.] [Assessment Boundary: Assessment does not include deriving mathematical equations to make comparisons.]
- HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. [Clarification Statement: Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]
- HS-LS2-6. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption or sea level rise.]
- HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.* [Clarification Statement: Examples of human activities can include urbanization, building dams, and dissemination of invasive species.]
- HS-LS2-8. Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]
- **HS-LS4-6.** Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.*

 [Clarification Statement: Emphasis is on designing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Use mathematical and/or computational representations of phenomena or design solutions to support explanations. (HS-LS2-1)
- Use mathematical representations of phenomena or design solutions to support and revise explanations. (HS-LS2-2)
- Create or revise a simulation of a phenomenon, designed device, process, or system. (HS-LS4-6)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

 Design, evaluate, and refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-LS2-7)

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds from K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS2-6)
- Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS2-8)

Connections to Nature of Science

Scientific Knowledge is Open to Revision in Light of New Evidence

- Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence. (HS-LS2-2)
- Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and

Disciplinary Core Ideas

LS2.A: Interdependent Relationships in Ecosystems

Ecosy stems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease. Organisms would have the capacity to produce populations of great size were it not for the fact that environments and resources are finite. This fundamental tension affects the abundance (number of individuals) of species in any given ecosy stem. (HS-LS2-1),(HS-LS2-2)

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

- A complex set of interactions within an ecosy stem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or phy sical disturbance to an ecosy stem occurs, it may return to its more or less original status (i.e., the ecosy stem is resilient), as opposed to becoming a very different ecosy stem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosy stems in terms of resources and habitat availability. (HS-LS2-2),(HS-LS2-6)
- Moreover, anthropogenic changes (induced by human activity) in the environment—including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosy stem and threaten the survival of some species. (HS-LS2-7)

LS2.D: Social Interactions and Group Behavior

 Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives. (HS-LS2-8)

LS4.C: Adaptation

 Changes in the phy sical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes the extinction—of some species. (HS-LS4-6)

LS4.D: Biodiversity and Humans

- Biodiversity is increased by the formation of new species (speciation) and decreased by the loss of species (extinction). (secondary to HS-LS2-7)
- Humans depend on the living world for the resources and other benefits provided by biodiversity. But human

Crosscutting Concepts

Cause and Effect

 Empirical ev idence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-LS2-8),(HS-LS4-6)

Scale, Proportion, and Quantity

- The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. (HS-LS2-1)
- Using the concept of orders of magnitude allows one to understand how a model at one scale relates to a model at another scale. (HS-LS2-2)

Stability and Change

 Much of science deals with constructing explanations of how things change and how they remain stable. (HS-LS2-6),(HS-LS2-7)

^{*}The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated

HS.Interdependent Relationships in Ecosystems evidence that may result in revision of an explanation. (HSactivity is also having adverse impacts on biodiversity LS2-6),(HS-LS2-8) through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus sustaining biodiversity so that ecosy stem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. (secondary to HS-LS2-7), (HS-LS4-6) ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-LS2-7), (secondary to HS-LS4-6) Both phy sical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (secondary to HS-LS4-6) Connections to other DCIs in this grade-band: HS.ESS2.D (HS-LS2-7), (HS-LS4-6); HS.ESS2.E (HS-LS2-2), (HS-LS2-6), (HS-LS2-7), (HS-LS4-6); HS.ESS3.A (HS-LS2-7), (HS-LS4-6); HS.ESS3.A (HS-LS2-7), (HS-LS4-6); HS.ESS3.A (HS-(HS-LS4-6); HS.ESS3.C (HS-LS2-2),(HS-LS2-7),(HS-LS4-6); HS.ESS3.D (HS-LS2-2),(HS-LS4-6) Articulation across grade-bands: MS.LS1.B (HS-LS2-8); MS.LS2.A (HS-LS2-1),(HS-LS2-2),(HS-LS2-6); MS.LS2.C (HS-LS2-1),(HS-LS2-2),(HS-LS2-6),(HS-LS2-6); MS.ESS2.E (HS-LS2-6); MS.ESS3.A (HS-LS2-1); MS.ESS3.C (HS-LS2-1),(HS-LS2-2),(HS-LS2-6),(HS-LS2-7),(HS-LS4-6); MS.ESS3.D (HS-LS2-7) Common Core State Standards Connections: ELA/Literacy -RST.9-10.8 Assess the extent to which the reasoning and evidence in a text support the author's claim or a recommendation for solving a scientific or technical problem. (HS-LS2-6), (HS-LS2-7), (HS-LS2-8) Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or RST.11-12.1 inconsistencies in the account. (HS-LS2-1),(HS-LS2-2),(HS-LS2-6),(HS-LS2-8) Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to RST.11-12.7 address a question or solve a problem. (HS-LS2-6),(HS-LS2-7),(HS-LS2-8) RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-LS2-6),(HS-LS2-7),(HS-LS2-8) WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-LS2-1),(HS-LS2-2) WHST.9-12.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (HS-LS4-6) WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS2-7),(HS-LS4-6)

HSS-IC.A.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population. (HS-LS2-6) HSS-IC.B.6

and interpret the scale and the origin in graphs and data displays. (HS-LS2-1),(HS-LS2-2), (HS-LS2-7) Define appropriate quantities for the purpose of descriptive modeling. (HS-LS2-1),(HS-LS2-2),(HS-LS2-7)

Reason abstractly and quantitatively. (HS-LS2-1),(HS-LS2-2),(HS-LS2-6),(HS-LS2-7)

HSS-ID.A.1 Represent data with plots on the real number line. (HS-LS2-6)

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-LS2-1),(HS-LS2-2),(HS-LS2-7)

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose

Evaluate reports based on data. (HS-LS2-6)

Model with mathematics. (HS-LS2-1), (HS-LS2-2)

Mathematics -MP.2

HSN-Q.A.1

HSN-Q.A.2 HSN-Q.A.3

MP.4

May 2013 NGSS Release 88

HS.Inheritance and Variation of Traits

HS.Inheritance and Variation of Traits

Students who demonstrate understanding can:

- HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. [Assessment Boundary: Assessment does not include specific gene control mechanisms or rote memorization of the steps of mitosis.]
- HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]
- HS-LS3-2. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]
- HS-LS3-3. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. [Clarification Statement: Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.] [Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in 9-12 builds on K-8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations

 Ask questions that arise from examining models or a theory to clarify relationships. (HS-LS3-1)

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

 Use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-4)

A nalyzing and Interpreting Data

A naly zing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

 A pply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. (HS-LS3-3)

Engaging in Argument from Evidence

Engaging in argument from evidence in 9-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

 Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. (HS-LS3-2)

Disciplinary Core Ideas

LS1.A: Structure and Function

 All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (secondary to HS-LS3-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS1-1.)

LS1.B: Growth and Development of Organisms

• In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism. (H5-LS1-4)

LS3.A: Inheritance of Traits

Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species' characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function. (HS-LS3-1)

LS3.B: Variation of Traits

- In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. (HS-LS3-2)
- Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors. (HS-LS3-2),(HS-LS3-3)

Crosscutting Concepts

Cause and Effect

 Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-LS3-1),(HS-LS3-2)

Scale, Proportion, and Quantity

 Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). (HS-LS3-3)

Systems and System Models

 Models (e.g., phy sical, mathematical, computer models) can be used to simulate sy stems and interactions—including energy, matter, and information flows within and between sy stems at different scales. (HS-LS1-4)

Connections to Nature of Science

Science is a Human Endeavor

- Technological adv ances have influenced the progress of science and science has influenced adv ances in technology. (HS-IS3-3)
- Science and engineering are influenced by society and society is influenced by science and engineering. (HS-LS3-3)

Connections to other DCIs in this grave-band: HS.LS2.A (HS-LS3-3); HS.LS2.C (HS-LS3-3); HS.LS4.B (HS-LS3-3); HS.LS4.C (HS-LS3-3)

Articulation across grade-bands: MS.LS1.A (HS-LS1-4); MS.LS1.B (HS-LS1-4); MS.LS2.A (HS-LS3-3); MS.LS3.A (HS-LS1-4),(HS-LS3-1),(HS-LS3-2); MS.LS3.B (HS-LS3-1),(HS-LS3-3); MS.LS3.A (HS-LS3-3); MS.LS3.A (HS-LS3-3); MS.LS3.B (HS-LS3-3); MS.LS3

Common Core State Standards Connections:

ELA/Literacy -

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS3-1),(HS-LS3-2)

RST.11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-LS3-1)

WHST.9-12.1 Write arguments focused on *discipline-specific content.* (HS-LS3-2)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-4)

Mathematics -

MP.2 Reason abstractly and quantitatively. (HS-LS3-2),(HS-LS3-3)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated

HS.Inheritance and Variation of Traits

MP.4	Model with mathematics. (HS-LS1-4)	
HSF-IF.C.7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-	
	LS1-4)	
HSF-BF.A.1	Write a function that describes a relationship between two quantities. (HS-LS1-4)	

May 2013 90

HS.Natural Selection and Evolution

HS.Natural Selection and Evolution

Students who demonstrate understanding can:

- HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. [Clarification Statement: Emphasis is on a conceptual understanding of the role each line of evidence has relating to common ancestry and biological evolution. Examples of evidence could include similarities in DNA sequences, anatomical structures, and order of appearance of structures in embry ological development.]
- HS-LS4-2. Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment. [Clarification Statement: Emphasis is on using evidence to explain the influence each of the four factors has on number of organisms, behaviors, morphology, or physiology in terms of ability to compete for limited resources and subsequent survival of individuals and adaptation of species. Examples of evidence could include mathematical models such as simple distribution graphs and proportional reasoning.] [Assessment Boundary: Assessment does not include other mechanisms of evolution, such as genetic drift, gene flow through migration, and co-evolution.]
- HS-LS4-3. Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. [Clarification Statement: Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations.] [Assessment Boundary: Assessment is limited to basic statistical and graphical analysis. Assessment does not include allele frequency calculations.]
- HS-LS4-4. Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

 [Clarification Statement: Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene frequency overtime, leading to adaptation of populations.]
- HS-LS4-5. Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. [Clarification Statement: Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, fishing, application of fertilizers, drought, flood, and the rate of change of the environment affect distribution or disappearance of traits in species.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

A nalyzing and Interpreting Data

A naly zing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

 Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. (HS-LS4-3)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

 Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-LS4-2),(HS-LS4-4)

Engaging in Argument from Evidence

Engaging in argument from evidence in 9-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). A rguments may also come from current or historical episodes in science.

 Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS4-5)

Obtaining, Evaluating, and Communicating Information

O btaining, evaluating, and communicating information in 9–12 builds on K–8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.

 Communicate scientific information (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-LS4-1)

Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

 A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new

Disciplinary Core Ideas

LS4.A: Evidence of Common Ancestry and Diversity

 Genetic information provides evidence of evolution. DNA sequences vary among species, but there are many overlaps; in fact, the ongoing branching that produces multiple lines of descent can be inferred by comparing the DNA sequences of different organisms. Such information is also derivable from the similarities and differences in amino acid sequences and from anatomical and embry ological evidence. (HS-LS4-1)

LS4.B: Natural Selection

- Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information—that is, trait variation—that leads to differences in performance among individuals. (HS-LS4-2),(HS-LS4-3)
- The traits that positively affect survival are more likely to be reproduced, and thus are more common in the population. (HS-LS4-3)

LS4.C: A daptation

- Ev olution is a consequence of the interaction of four factors: (1) the potential for a species to increase in number, (2) the genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for an environment's limited supply of the resources that individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those organisms that are better able to survive and reproduce in that environment. (HS-LS4-2)
- Natural selection leads to adaptation, that is, to a population dominated by organisms that are anatomically, behaviorally, and phy siologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. (HS-LS4-3),(HS-LS4-4)
- A daptation also means that the distribution of traits in a population can change when conditions change. (HS-LS4-3)
- Changes in the phy sical env ironment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes the extinction—of some species. (HS-LS4-5)
- Species become extinct because they can no longer survive and reproduce in their altered environment. If members cannot adjust to change that is too fast or drastic, the opportunity for the species' evolution is lost. (HS-LS4-5)

Crosscutting Concepts

Patterns

 Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-LS4-1),(HS-LS4-3)

Cause and Effect

 Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-LS4-2),(HS-LS4-4),(HS-LS4-5)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

 Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. (HS-LS4-1),(HS-LS4-4)

^{*}The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated

HC Natural Colection and Evolution

ns.Natural Selection and Evolution			
ev idence is disco	overed that the theory does not accommodate, the		
theory is general	Ily modified in light of this new evidence. (HS-LS4-1)		
Connections to other DCIs in this grade-band: HS.LS2.A (HS-LS4-2),(HS-LS4-3),(HS-LS4-3),(HS-LS4-5); HS.LS2.D (HS-LS4-2),(HS-LS4-3),(HS-LS4-4),(HS-LS4-5); HS.LS3.A (HS-LS4-3),(H			
1); HS.LS3.B (HS-L	LS4-1),(HS-LS4-2) (HS-LS4-3),(HS-LS4-5); HS.ESS1.C (HS-LS4-1); HS.ESS2.E (HS-LS4-2),(HS-LS4-5); HS.ESS3.A (HS-LS	4-2),(HS-LS4-5)	
Articulation across gi	made-bands: MS.LS2.A (HS-LS4-2),(HS-LS4-3),(HS-LS4-5); MS.LS2.C (HS-LS4-5); MS.LS3.A (HS-LS4-1); MS.LS3.B (H	S-LS4-1),(HS-LS4-2),(HS-LS4-3);	
MS.LS4.A (HS-LS4-	-1); MS.LS4.B (HS-LS4-2),(HS-LS4-3),(HS-LS4-4); MS.LS4.C (HS-LS4-2),(HS-LS4-3),(HS-LS4-4),(HS-LS4-5); MS.ESS1.C	(HS-LS4-1); MS.ESS3.C (HS-LS4-5)	
Common Core State	e Standards Connections:		
ELA/Literacy -			
RST.11-12.1	Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS4-1),(HS-LS4-2),(HS-LS4-3),(HS-LS4-4)		
RST.11-12.8	Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-LS4-5)		
WHST.9-12.2	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-LS4-1),(HS-LS4-2),(HS-LS4-3),(HS-LS4-3),(HS-LS4-3)		
WHST.9-12.9	Draw evidence from informational texts to support analysis, reflection, and research. (HS-LS4-1),(HS-LS4-2),(HS-LS4-3),(HS-LS4-4),(HS-LS4-5)		
SL.11-12.4	Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (HS-LS4-1),(HS-LS4-2)		
Mathematics -			
MP.2 MP.4	Reason abstractly and quantitatively. (HS-LS4-1),(HS-LS4-2),(HS-LS4-3),(HS-LS4-4),(HS-LS4-5) Model with mathematics. (HS-LS4-2)		

May 2013 92